
SAND97{2519 Distribution
Unlimited Release Category UC{905

Printed October 1997

Experiences Implementing the

MPI Standard on Sandia's

Lightweight Kernels

Ron Brightwell David S. Greenberg
Computational Sciences, Computer Sciences, and Mathematics Center

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-1110

Abstract

This technical report describes some lessons learned from implementing the Message Passing
Interface (MPI) standard, and some proposed extensions to MPI, at Sandia. The implementations
were developed using Sandia-developed lightweight kernels running on the Intel Paragon and Intel
TeraFLOPS platforms. The motivations for this research are discussed, and a detailed analysis
of several implementation issues is presented.

3

Acknowledgment

Appreciation is extended to the following people for contributing to this research: Lee Ann Fisk,
Tramm Hudson, Arthur B. Maccabe, Kevin McCurley, Lance Mumma, Rolf Riesen, Lance Shuler,
David van Dresser, and Stephen Wheat. In addition, the authors would like to thank Je� Brown,
Pang Chen, and David Womble for useful discussions.

4

Contents

Introduction 6

Background 6

MPI . 6
MPI-2 . 7
SUNMOS . 7
Puma . 7
MPICH . 7
MPICH ADI Design . 8

MPICH ADI-1 Design . 8
MPICH ADI-2 Design . 8

Initial Design and Implementation 9

Prototyping with SUNMOS . 9
Initial Puma Design . 10
Evaluation of Initial Design . 10

Portals Design and Performance in MPI 12

Puma Design and Performance in MPI 13

Progress . 13
Using the Message Co-processor . 14
Design for Thread Support . 14

Beyond Sends and Receives 15

Collective Operations . 15
One-Sided Communications . 15
Combined Block Issues . 16
Real-Time Channels . 17

Validating MPI 17

Conclusion 19

References 20

Figures

1 Paragon Pingpong Latency . 12
2 TeraFLOPS Pingpong Latency . 13

5

Experiences Implementing the

MPI Standard on Sandia's

Lightweight Kernels

Introduction

Sandia National Laboratories, and other institutions requiring highest-performance computation, have been
using massively parallel processing (MPP) techniques for over a decade to harness thousands of micropro-
cessors. The key to the use of MPPs is that many problems can be decomposed (often along domain relevant
boundaries) into subproblems which can be assigned to individual processors. Informational dependencies
between pieces are resolved by sending data between processors over a dedicated, high-speed, interconnection
network.

Through multiple generations of machines and multiple vendors (such as nCUBE, TMC, Intel, and Cray)
a stylized version of communication developed. One node,1 the sender, packages data into a message and
sends it over the interconnect to a second node, the receiver, which unpacks the message. Each vendor
implemented the packing of data, method of describing destination, bu�ering of data, method of using the
interconnect, method for recognizing message arrival, method of acknowledgment, etc., to best match each
speci�c hardware and each perception of user requirements.

In order to insulate application programs from the peculiarities of each new system, message passing
libraries or wrappers were created. Eventually in 1993, a forum was set up to create a message passing
standard. In 1994, the Message Passinge Interface standard [9] was published.

However, the real work had just begun. MPI speci�es a high-level interface suitable for being ported to
a wide variety of systems, from large-scale, tightly integrated MPPs to small clusters of workstations. Yet
in the MPP world, MPI was expected to do much more { it had to replace highly tuned, highly integrated
vendor systems which were often an integral part of the system software. This paper describes experiences
in decoupling the user interface from the system software.

In developing Sandia's MPI implementation, the work of two ongoing projects was leveraged: the Puma
operating system [12] work at Sandia and the MPICH [4] work at Argonne National Laboratory and Mis-
sissippi State University. Puma provided the basic operating system services required for internode data
movement, and MPICH provided a layered approach to MPI which allows implementors to concentrate on
data movement. This layered approach also allowed for the lessons learned from this implementation to be
fed back to both development groups in order to better de�ne the roles and abilities of each layer.

Background

MPI

The Message Passinge Interace standard [9] was developed over a 12 month period in 1993-1994 through
meetings involving more than 80 participants from about 40 di�erent organizations. The MPI speci�cation
document was published in 1994.

The core of MPI is the functions and semantics that de�ne data movement. In order to avoid mandating
any speci�c implementation behavior in regard to message bu�ering, the standard de�nes four di�erent
semantics associated with sending a message. Completion of a send operation is local to the sending process
if no action from the destination process is needed to complete the operation. Likewise, completion of a send
operation is non-local if some interaction with the destination process is required.

The most basic send mode is standard mode. Completion of a standard mode send may be either local or
non-local, depending upon the implementation. For example, implementations that want to avoid bu�ering

1Over time single processors have been replaced with multiple processor nodes.

6

unexpected messages (i.e. those messages for which no receive had been posted prior to the arrival of the
message) at the receiver may choose to implement standard sends via a rendezvous protocol.

Completion of a synchronous mode send is non-local. A synchronous send completes only when a matching
receive operation has begun at the receiver. This mode provides a rendezvous point between the sender and
the receiver.

Completion of a ready mode send is local. A ready send is an opportunity to take advantage of a hint
from the application about the state of the receiver. Use of a ready send by the application guarantees that
a matching receive has been pre-posted at the receiver, in hopes that this will eliminate any handshaking or
protocol overhead needed to handle unexpected messages.

Completion of a bu�ered send is local. In the bu�ered send mode, the application explicitly provides
bu�er space to the MPI implementation to use for copying local send bu�ers. Bu�ered sends can complete
regardless of the state of the receiver as long as there is su�cient space within the user-provided bu�er in
which to copy outgoing messages.

Because there are multiple send modes and only one receive operation, the receive operation must be
implemented to respond with the correct protocol to handle the send-side semantics. Therefore, the initiation
of an MPI send operation must always provide protocol information so the receiver can respond appropriately.

The MPI standard also de�nes a rich set of collective operations, such as broadcast and reduction oper-
ations, which can be layered on top of the MPI point-to-point functions.

MPI-2

Since the release of the MPI standard document in June of 1994, research in the area of message passing
continued. Researchers proposed some extensions to the original interface and semantics to provide more
robust communication and possibly higher performance. In March of 1995, the MPI forum began meeting
to discuss corrections and additions to the MPI standard. As a result, the MPI-2 standard [10] was released
in July of 1997 and contained de�nitions for process creation and management, one-sided communications,
extended collective operations, external interfaces, and parallel I/O.

The de�nition of an interface for doing one-sided communications is an attempt to achieve higher per-
formance by eliminating the protocol overhead necessary to achieve MPI-1 peer communication semantics.
Rather than send and receive bu�ers, the application opens up a \window" to which remote processes can
put or get data without any explicit interaction from the local process.

SUNMOS

SUNMOS (Sandia/University of New Mexico Operating System) [8] was designed to better take advan-
tage of the available compute and communication power of the nCUBE and Intel Paragon machines, while
maintaining a small footprint to leave as much memory as possible for application use. SUNMOS is a single-
tasking lightweight kernel optimized for message passing architectures, and does not contain a majority of
the functionality and constructs present in most standard, full-blown UNIX operating systems.

Puma

As its successor, the Puma operating system attempts to build o� of the experiences of SUNMOS, to
provide a more exible, lightweight, high performance message passing environment for massively parallel
computing. Puma has been developed for the i860-based Intel Paragon platform, and has been ported to
the Pentium-Pro-based Intel TeraFLOPS platform.

Message passing in Puma is accomplished through the use of portals, which are openings in a process's
address space into which the Puma kernel can deposit incoming messages. See [12] for a complete description
of the di�erent types and options of Puma portals.

MPICH

MPICH [4] is a portable implementation of MPI developed jointly by Argonne National Laboratory and
Mississippi State University. MPICH contains an abstract device interface (ADI) software layer which allows

7

it to be ported to any message passing or shared memory platform. The ADI pinpoints the device speci�c
functionality needed to implement MPI and greatly reduces the amount of e�ort required to port MPICH.
Because MPICH tracked the activity of the MPI Forum and was the �rst working implementation available
at the time the standard was published, it established a foothold with vendors and others porting MPI to
speci�c platforms. MPICH is currently the most widely used implementation of MPI.

MPICH ADI Design

MPICH is designed so that there are two layers. The �rst is an architecture-independent layer which contains
all of the MPI API functions which do not depend on any communication. Included in this layer are the
functions for virtual topologies, datatype management, error managment, and so forth. Also included in
this layer are those functions which may utilize message passing, but which can be layered upon MPI
communication. The second layer, or ADI, is an architecture-dependent layer which is responsible for
performing communication and data movement operations. The ADI is a low-level interface upon which
a message passing layer, such as MPI, can be built. The ADI functions contain entry points for starting,
testing, and completing message passing operations.

MPICH ADI-1 Design

The �rst ADI implementation (ADI-1) [3] contains approximately 30 functions for communication with
a device implementation. The ADI communicates to the device through these functions, and the device
communicates information back to the upper layers through device handles. These handles are structures
which contain the state of a particular communication request. Certain implementations may not need to
implement all of these functions, and all may be de�ned as macros to increase performance or remove them
from compilation.

The send handle is also separated into two parts. The �rst part is device-independent and contains
information pertinent to most message passing systems, such as destination process, number of bytes, and
operation completed ag. The second part is device-dependent, allowing for information to be provided for
a speci�c device.

Since MPI has non-blocking communication, posting an operation simply starts it. Once an operation
is started, it makes progress through ADI functions which perform a non-blocking test for completion or a
blocking completion operation.

MPICH ADI-2 Design

The second ADI implementation (ADI-2) [5] attempts to provide more functionality for multi-protocol and
multi-device implementations. Multi-protocol implementations can adjust the protocol based on size of
message, machine hardware structure, type of message, or any other property which might change either the
quality of service needed for the message or the characteristics of the network. Multi-device implementations
are a speci�c way of encapsulating a set of protocols together. Although ADI-1 did not provide explicitly
for a multi-protocol device, most implementations provided a two-level protocol to lower latency for short
messages and increase bandwidth for longer messages. For example, an ADI function could be de�ned as
a macro which examined message length and then called a short send or long send function, depending on
the number of bytes to be transfered. ADI-2 assumes multiple levels of protocol and is designed to allow
an implementation to provide this information. ADI-2 also allows for a multi-device implementation. One
of the shortcomings of ADI-1 was that it was not well designed to handle platforms where there are several
ways of intermixing message passing. For example, on a network of workstations, it is desirable to use shared
memory for message passing between processes on the same workstation and a di�erent method for inter-
workstation communication. The design of ADI-1 did not prohibit such a device, but ADI-2 was designed
with such implementations in mind.

ADI-2 was also designed to limit the amount of overhead in some of the ADI calls. For example, a
blocking send request in ADI-1 would build a request argument and �ll it with the information necessary
to complete the operation. ADI-2 attempts to optimize this operation by avoiding the construction of the
request and just providing the necessary information through function parameters. ADI-2 also provides the
capability for a device to provide information about the operations necessary to start, progress, and complete

8

operations. Function pointers have been added to the request handles so that the device can choose the
necessary operations. Whereas in ADI-1 all operations were completed by calling the same function, ADI-2
allows the device to specify the function that must be called to complete an operation. This allows the device
to construct a state machine using function pointers kept inside a request rather than storing the state inside
the request and implementing the state machine several times within multiple functions.

Initial Design and Implementation

The goal of the MPI Forum was to provide an interface that was not only usable for application developers,
but that was also able to achieve high performance from the underlying message passing hardware. Similarly,
the goal of the the SUNMOS and Puma operating systems was to provide the highest possible message passing
performance to portable libraries. Thus, the implementation of MPI on SUNMOS and Puma allowed for
veri�cation as to whether the goals of both MPI and the operating systems were met.

Prototyping with SUNMOS

Using either low-level SUNMOS primitives or an emulation of Intel's NX message passing library, users
can achieve 160 megabytes per second bandwidth for messages greater than 30 kilobytes and zero-length
message latencies as low as 17 microseconds using the message co-processor [7]. The initial goal was for
an MPI library was to demonstrate at least 90% of the achievable bandwidth and no more than twice the
latency.

The �rst step in testing SUNMOS' ability to e�ciently host MPI was to port the MPICH code onto
Sandia's paragons. Since the MPICH distribution already included an implementation layered on top of NX
this was quite straightforward.

The next step was to replace the MPICH ADI routines for send and recv with new routines which used
the SUNMOS low-level primitives called nsend and nrecv. These routines provided a simple matching
mechanism which could be used to let the system software place incoming messages into appropriately
prepared user bu�ers rather than into general, global communication bu�ers. This avoidance of bu�er
copying is the essence of how SUNMOS provides high bandwidth, and thus it was important to have MPI
make use of the matching.

Unfortunately, MPI required slightly more sophisticated matching than SUNMOS provided. MPI matches
a source identi�er, a user-de�ned type, and a context from incoming messages with corresponding informa-
tion supplied by pre-posted receives. The source identi�cation match was easily mapped into SUNMOS's
matching of source process id and group id. The user-de�ned type could map to SUNMOS's tag matching,
including the ability to de�ne a wildcard at the receive side. Alternatively, the MPI context could be encoded
in the SUNMOS tag. A di�culty arose when both user types and MPI context were mapped to SUNMOS
tags. The MPI context can never match a wildcard, while the user type can sometimes match a wildcard.
SUNMOS did not provide a way of specifying which portion of the tag could be wildcarded. (As will be seen
below one of the extensions added to Puma was to allow a wildcard mask).

The inability to perform all matching at the time of system reception of messages left two alternatives.
An approach simliar to the MPICH NX implementation could be used in which every message is bu�ered,
and then matching is done by the MPI library, or an MPI library with restrictions on the matching could
be done. Since the focus was on performance, the latter was chosen.

Matching could be restricted in two ways: prohibit wildcarded user types or ignore MPI context. Since
many of the applications at Sandia used wildcarded types and almost all applications used only the default
MPI context of MPI COMM WORLD, context was ignored. During the implementation, it was realized
that the context information could be passed in an unused SUNMOS message header �eld and tested when
the MPI library gained control. A mismatched context could then cause a fault, rather than allowing an
unsupported function to quietly continue.

When the restricted implementation of MPI was built on the SUNMOS primitives the performance was
remarkably good. In fact, it was di�cult to distinguish the performance results of using MPI from the results
of using the native SUNMOS routines. Several applications transitioned over to using this MPI library on
the large Sandia Paragon (Acoma) and have not only run well there, but were easily ported to the Sandia

9

TeraFLOPS machine (Janus) when it arrived. Thus, MPI served its stated purpose of providing portability
and performance when the use of contexts was restricted.

Several questions remained to be resolved, however. The most obvious question was whether the full
use of contexts could be included without degrading performance. As is shown below, this turned out to be
relatively easy. A more subtle question was how to increase the robustness of performance. The SUNMOS
tests and many of the applications designed for the Paragon were carefully tuned to ensure that receives
were pre-posted. In addition, messages tended to be large. In order for MPI to be truly successful, it had to
handle other cases gracefully. It was hoped that new concepts included in Puma (such as the portal) would
allow the creation of an MPI library which met all of Sandia's performance and portability needs.

Initial Puma Design

The initial design of the transport layer for the Puma implementation of MPI was a two-level protocol based
on message size. This approach attempts to decrease the latency of small messages while increasing the
bandwidth of large messages.

The initial implementation of MPI was layered on top of a user-level portal library. This layered approach
was chosen for several reasons. The primary reason was the expectation that applications wishing to make use
of portals would do so through the user-level portal library. The user-level portal library was designed to be a
bu�er that would insulate the developer from the low-level details and inner workings of the portal structures.
Another reason was that the MPI library and the operating system were being developed concurrently. Using
the user-level portal library helped to decrease the amount of dependence the MPI library had on kernel and
associated library structures.

At the time of development, few libraries were actually making use of the user-level portal library, and
using it in MPI o�ered the chance to evaluate its capabilities and performance. MPI and Puma could
bene�t from each other. However, co-development has an inevitable cost { one e�ort is often left waiting
for the other to provide key features. For example, the sychronous protocol was designed to make use of the
acknowledgment feature of some memory descriptors, but the mechanisms that generate acknowledgments
had not been implemented when the MPI library was ready to make use of them.

On the positive side, co-development allows early changes in design and implementation. Because the
MPI implementation utilized nearly all of the features of all the di�erent types of portal memory descriptors,
it became a good tool with which to stress test the portal libraries and kernel. As a result of its use with
MPI, the user-level portal library underwent some cosmetic changes in an e�ort to increase its usability.
The API was modi�ed to be more consistent, and some additional functionality was added for a few basic
portal manipulation operations. The MPI implementation was adapted to the new interface and continued
to be used as a regression tool to insure that message passing functionality within the kernel and libraries
continued to work correctly as the operating system evolved.

Evaluation of Initial Design

Initial performance results of MPI were very disappointing. Tests showed MPI zero-length message latencies
to be an order of magnitude greater than the lower bound SUNMOS had shown was possible.

In order to �nd the cause of the poor performance, the MPI library was instrumented, and timings were
taken of various operations within MPI. For example, when posting a receive, the implementation acquires
the necessary resources, con�gures the information that is speci�c to the receive (bu�er pointer, length, tags,
etc.), checks the unexpected message queue, and either posts or copies the message.

Essentially, the device layer functions were broken down into smaller pieces, each of which performs a
speci�c function, and analyzed. Not only were regions of code instrumented, but counters were added to
keep track of data such as the number of messages that were deposited directly into the user bu�er, the
number of unexpected messages that were bu�ered, and the average and maximum number of unexpected
messages that were queued. All of this data had to be compiled in order to discover the problem areas.

Unfortunately, even this level of instrumentation was not enough. In most cases, the problem areas
involved calls to one or more user-level portal library functions. Therefore, the user-level portal library
needed to be instrumented to �nd the real cause of most performance bottlenecks. The user-level and
system-level portal libraries were analyzed in order to determine the best way to insert instrumentation.

10

However, this analysis immediately revealed some problems before any instrumentation occured. Tracing
through the various layers of function calls identi�ed several opportunities for optimization.

One optimization was to eliminate duplicated checks. The portals library is divided into routines which
each perform a speci�c function. However, each function validates the user arguments and then converts
them in order to access system structures. Since several calls could be needed in order to set up a portal in
a desired fashion, the validation checks were unnecessarily repeated.

A second problem identi�ed was the inability of MPI to convey any information through the portal library
interface about how the match list and match list entries were being used. Because portals were designed to
be exible enough to handle many di�erent protocols and message passing semantics, the library interface
was also designed to be very general. However, this generality prevents performance optimizations tied to
speci�c uses of portal structures.

For example, there are optimizations that MPI can take when activating and de-activating match list
entries that the user-level portal library cannot perform. There are three di�erent error or overow pos-
sibilities at each match list entry. Either the incoming message does not match at the current entry (no
match), or there is insu�cient space in the memory descriptor (no �t), or there is no bu�er available at the
current entry (no bu�er). When a match list entry is de-activated, the portal library traverses the match
list, updating each entry's pointers to insure that the inactive entry is not the target of any overow pointer.
However, the semantics of MPI are such that two of these overow conditions should never occur. A match
list entry will always have an available bu�er associated with it, so `no bu�er' overows will never happen.
Also, MPI has no concept of truncated messages, where the size of the incoming message is larger than the
matching receive bu�er. Therefore, a correct MPI program will never use the `no �t' overow condition.
Since MPI does not make use of these two overow conditions, de-activating a match list entry is simpli�ed.

The portals library also `locks' the match list when performing updates. Because the library does not
know the structure of the match list, certain steps have to be taken to insure the integrity of the list. In the
MPI implementation, there are overow entries at the end of the list which will insure that a message will
always be received if there is no posted match list entry. This allows MPI to avoid using a locking mechanism
for additions and deletions to the match list structure. The libraries only manipulate individual entries and
there is no way to convey information about the list structure as a whole.

It became apparent that many of performance problems in MPI could be eliminated by consolidating the
operations into those which the MPI library would perform often. Because portals are in the application's
address space, it was decided to attempt to optimize MPI by eliminating as much dependence as possible on
the user- and system- level portal libraries, allowing the MPI library to manipulate the portals structures
directly.

The e�ects of this change on the performance of the library were dramatic. Latencies were reduced by an
order of magnitude, within a factor of four of the SUNMOS numbers. Several changes were also made to the
manner in which message receipt acknowledgments were handled, in an attempt to use the portals structures
more e�ciently. While these changes did not directly e�ect latency numbers, there was a signi�cant increase
in the bandwidth performance.

Latency numbers continued to decrease as the operating system was tuned and as support for using the
message co-processor was implemented. A more complete and detailed description of the initial implemen-
tation of MPI on Puma portals can be found in [2].

Figure 1 shows the latency of several di�erent communication mechanisms for all three operating systems
available on the Paragon using the message co-processor. The version of OSF AD/1 used is release 1.4. Sandia
has been told that this is the �nal release of OSF for the Intel Paragons. The version of SUNMOS used is
release 1.7.1 which is also intended to be a �nal release. Both these versions are in active use in production
systems. The version of Puma used is informally considered release 0.5 and was essentially orphaned when
work moved to the TeraFLOPS machine.

When the OS is kept constant the implementations of MPI tend to be slightly superior to those of NX.
Since NX is the primary message passing library for many production applications it has been carefully tuned.
Thus it appears that added functionality in MPI does not lead to a loss in performance. The di�erences in
performance between SUNMOS, OSF, and Puma are probably mostly due to di�erences in amount of time
spent tuning the implementations.

Speci�cally, the timings for SUNMOS exhibit the best performance, except in the case of the MPI library
built upon SUNMOS's NX compatibility library. This can be attributed to the quality of the implementation

11

Figure 1: Paragon Pingpong Latency.

of the NX-compatible device in MPICH. Notice that the SUNMOS native MPI implementation outperforms
the SUNMOS NX implementation, demonstrating the ability of MPI to achieve high peformance. The
communication performance of the Puma independent block memory descriptor is less than that of OSF
NX, but the di�erence between the MPI implementations built on top of each one of those facilities remains
somewhat constant. Again, notice for Puma that MPI slightly outperforms the NX implementation.

Figure 2 shows the latency for two of the system level portals and the MPI and NX libraries for Cougar on
the TeraFLOPS machine using the message co-processor. These numbers represent what Intel calls release
1.2 WW24, which is a fully functional release but not the �nal tuned version of Cougar.

It is hard to draw �rm conclusions from interim releases, but it appears that the relative overhead of the
MPI library on the TeraFLOPS machine is less than that on the Paragon. While the overhead of the MPI
library for Puma on the Paragon was almost half of what the independent block memory descriptor could
achieve, the same overhead for the TeraFLOPS machine is about one-third.

Also, the same MPI library which slightly outperformed NX for Puma on the Paragon is now slightly
slower than NX for Cougar on the TeraFLOPS. This may be a result of improved work on NX or may just
be a function of the relative advantages seen by each library in moving from the i860 to the Pentium-Pro
processor.

Portals Design and Performance in MPI

Portals are designed to provide all of the communication and memory descriptions needed to build high-
level protocols. The main design characteristic of Puma and Portals is the ability of the kernel to deposit
messages directly into the user's bu�er. The portal match list structure is designed to allow for the context
and tag matching capability needed for MPI. The initial implementation of MPI utilizes nearly every feature
of portals and the available memory descriptors. The independent block memory descriptor is used for
pre-posted receives and acknowledgments. The dynamic block is used to collect unexpected messages, while
the single block is used for reading in the long protocol. The acknowledgment and reply features of memory
descriptors are also used. The only additional feature added to portals to support MPI was the ability to
atomically search the dynamic heap and activate a memory descriptor if the requested message is not found.
This allows MPI to search the queue of unexpected messages that have arrived and post a receive if the

12

Figure 2: TeraFLOPS Pingpong Latency.

desired message has not arrived.
Since MPI essentially mandates that some protocol information be sent with data messages, use of

the fastest performing Puma portal, the single block memory descriptor, cannot be used for pre-posting
receives. The single block deposits the data directly into memory without copying any of the message header
information. In order to get the header information into user space, the memory has to be validated and
the header has to be copied. However, the MPI implementation uses only a few �elds in the message header
structure. Latency numbers could possibly be improved by eliminating the copying of �elds in the message
header which the MPI implementation does not use.

MPI will also bene�t from the use of the combined block memory descriptor. This descriptor allows
pieces of a single incoming message to be deposited at di�erent o�sets within a logically contiguous bu�er.
For non-contiguous datatypes used in point-to-point communication, MPI currently allocates a temporary
bu�er and copies the data on both the sending and receiving sides. For one-sided communications, data is
packed when the target bu�er is contiguous, but is sent in individual blocks when the target bu�er is non-
contiguous. Once implemented in the Puma kernel, the combined block memory descriptor will eliminate
the need to pack and unpack data for non-contiguous datatypes. Not only will this reduce the number
of memory allocations and memory-to-memory copies, but will also reduce the amount of code complexity
needed to handle the special cases of dealing with non-contiguous data. See page 15 for a discussion of
the use of combined blocks in one-sided communications, and page 16 for a discussion of combined block
implementation issues.

Puma Design and Performance in MPI

Progress

One of the implementation issues for any MPI library is that of progress. Unlike previous message passing
interfaces, the MPI standard mandates how and when certain message passing operations complete. In order
to insure that MPI operations make progress, most implementations have a progress engine built into the
library function calls. That is, regardless of the MPI function the user calls, the implementation attempts
to complete any outstanding operations. Because the implementation cannot determine the frequency with

13

which the user application will make calls to the library, some implementations have to use a timer interrupt
to insure that operations complete. A ick operation such as that used in Intel's NX message passing library
was considered in MPI-1, but was rejected for inclusion in the standard.

Portals eliminate the need for any asynchronous progress mechanism. Since the kernel sends and receives
messages without any explicit involvement from the user process, it maintains progress for MPI operations
without using a timer or an explicit progress mechanism in every library function call.

Using the Message Co-processor

Puma supports the use of multiple processors on a compute node through several di�erent mechanisms [2].
One possibility is to dedicate a processor to message passing. In this mode, the kernel runs on a dedicated
processor while the application runs on the remaining processors. This can lead to signi�cantly improved
message passing performance since the application need not be interrupted by the kernel in order to handle
message passing events.

However, co-processor mode also made the interaction between the kernel and the MPI library more
complex. For example, the kernel updates certain structures in the application's address space to signify
the arrival of a message on a portal. If the kernel and application are running on the same processor, then
the arrival of a message and the updating of these structures guarantees that the entire message has arrived
into the application's memory. If the kernel and application are running on separate processors, the kernel
may be updating structures as the message is deposited in the application's address space, before the entire
message has been received.

For large messages, the noti�cation of message arrival and completion may be signi�ed by the kernel
before the last byte of data has been received. The current implementation of the Puma kernel prevents
the user from seeing incomplete data by setting a ag to inform the application when the kernel is active.
A message is guaranteed to have completely arrived when both the portal structures have been updated
and the active ag is clear. However, this solution can overcompensate and cause applications to wait for
the kernel to complete the processing of a subsequent message. For time sensitive applications this may be
unacceptable and a di�erent approach will be necessary.

The use of the second processor not only for processing message, but also for manipulating MPI library
structures needs to be investigated further. In the current implementation, calls to the MPI WAIT and
MPI TEST family of functions check for message arrival, �ll in the MPI STATUS structure, and free any
resources associated with the message. Some of this work could be o�oaded to the message co-processor,
possibly reducing some time cosuming operations.

For example, when using non-contiguous datatypes, the MPI library allocates space and packs the message
into a contiguous bu�er. If a portion of the MPI library were running on the co-processor, it could allocate
the memory and do the copying while the application continued to run on the other processor, providing more
overlap between communication and computation. On the receiving side, the library running on a dedicated
processor could receive the message, copy it into non-contiguous bu�ers, free the allocated memory, update
the status, and free other receive resources without waiting for an explicit call from the application to peform
these operations.

The Intel Paragon and TeraFLOPS machines have multiprocessor nodes for this purpose, and some
networking hardware such as Myrinet [1] also have a dedicated message co-processor which could possibly
be used in this manner.

Design for Thread Support

One way to take advantage of the available processing resources on a compute node for the purposes described
above is through the use of threads. The MPI standard does not explicitly address threads, but the MPI
model does not preclude them. The MPI-2 standard contains a model for how threads can be used safely
within an MPI application. The model essentially recommends using a communicator per thread.

MPICH is not currently designed to support the use of threads within the device layers. There are some
device implementations of MPICH which are thread-safe, where manipulations of globals structures occur
within critical regions surrounded by a semaphore. There is also a device implementation for Windows NT
which uses multiple threads to handle the queueing and dequeueing of messages [11]. It is expected that

14

future releases of MPICH will be designed for platforms which support some of the basic features available
in a thread library such as those de�ned by the POSIX standard [6].

In anticipation of a multithreaded MPI library, the Sandia implementation was analyzed in order to
determine its appropriateness for such a model. The initial implementation uses a single portal to receive
MPI messages with the context (communicator) identi�er encoded in the matchbits. This approach was
taken because portals were viewed as a limited resource since there are only 64 allocated to each applica-
tion. However, portal numbers are the primary method of message selection and can be used to provide
a safe message passing space. A more natural use of portals in MPI is to map a single portal to a single
communicator and increase the number of portals available to an application.

Another implementation of MPI was developed which uses this approach. Portals provide a system level
context for messages that reduces the amount of global state that needs to be maintained for each communi-
cator. Essentially, messages received on di�erent portals can be received and processed more independently.
Reducing the amount of dependence and state reduces the need for critical sections of code which must run
atomically. While the �rst implementation could have been made thread-safe, the second implementation
takes better advantage of the inherent Puma message passing model.

However, there are still many issues left to resolve regarding the allocation of message passing resources
in this implementation. For example, the number of posted receives for any communicator is �xed at library
initialization time. It is likely that the number of posted receives will vary widely for di�erent communicators,
especially \hidden" communicators used for collective operations. Likewise, the amount of bu�er space
needed to hold unexpected messages is �xed at initialization time and is likely to vary considerably for
di�erent communicators.

An interesting further question involves determining how to make best use of a threaded message passing
library. In some cases, applications have seen reduced performance when naively using threaded utilities.
Future research will have to focus on providing thread use guidelines as well as on providing thread capabil-
ities.

Beyond Sends and Receives

Collective Operations

The initial implementation of the MPI collective operations were simply layered on top of MPI peer com-
muncation, which is the default for MPICH. There are several Puma core collective routines which are built
directly on top of portals and are optimized for message size and number of participating processes. These
collective routines were designed speci�cally to be a basis for implementing the MPI collective functions.
The MPI implementation takes advantage of the Puma collective routines wherever possible, defaulting back
to the MPICH layered ones where there is no Puma equivalent operation. A more complete description of
the implementation of Puma collective operations can be found in [2].

In modifying MPICH to use these native collective operations, several shortcomings of MPI were iden-
ti�ed. First, MPI collective operations are more cooperative than collective. Even though every process
that participates in a collective operation must call the same function, the parameters to some functions are
not guaranteed to be valid in all processes. That is, there are some collective operations which must ignore
certain parameters which are only guaranteed to be usable by the root process. For example, the receive
bu�er in the MPI GATHER operation is root signi�cant. If this was not the case, this bu�er could be used
on the non-root nodes as scratch space for intermediate communication. Likewise, the datatype arguments
need not be the same in every participating process. Some operations can involve data which is contiguous
on some participating process but non-contiguous on others.

One-Sided Communications

The MPI-2 standard contains a de�nition of one-sided communications, which di�er from point-to-point
operations in that the origin process speci�es both the sending and receiving parameters and the target
process need not be explicity involved in the operation. The de�nition contains functions for data movement
operations such as put and get, which are already available on shared memory architectures such as SGI and
distributed shared memory Cray T3 platforms.

15

Portals are ideal for such operations. Because the kernel is responsible for depositing messages, the
process receiving the data need not make an explicit call to receive a particular message. Likewise, read
memory portals can be set up so that the kernel is responsible for responding to a read memory request. An
initial proposal for one-sided communications as it appeared in the March 4, 1996 version of the document
was implemented on Puma portals to be used in a code which was being ported from the Cray T3D. A more
complete description of that implementation of one-sided communications can be found in [2].

One-sided communications provides the opportunity to get the most performance from Puma Portals, but
also exhibits some of the weaknesses. For contiguous datatypes, the put operation provides the opportunity to
achieve the greatest bandwidth and lowest latency communications using Portals. However, non-contiguous
datatypes expose a weakness of Puma, which is, in part, due to the incomplete implementation of combined
block memory descriptors.

MPI two-sided communication requires message headers to be retained. Because any type of MPI send
operation can be matched with any receive, MPI point-to-point semantics mandate that some type of protocol
information accompany every message so that the receiver can be informed of any action it must perform to
complete the operation. In Puma, this information is contained in a message header which must be retained
so that the protocol can be identi�ed.

Thus, the Puma implementation of MPI sends and receives had to use the more expensive independent
block memory descriptors rather than the single block memory descriptor(in �gure 2 the di�erence is about
13%). The independent block descriptor is more expensive not only because it does the actual header copying
but because it does an extra address validation and updates pointers for potential multiple blocks.

Unlike point-to-point communications, there is no protocol information associated with one-sided opera-
tions and thus no header information need be retained. The faster single block memory descriptor can now
be utilized.

In contrast, one-sided operations with non-contiguous datatypes can require the lowest bandwidth and
highest latency communications mechanisms in Puma. Since non-contiguous data can be packed on the send
side and unpacked on the receive side for point-to-point messages, the overhead only involves memory-to-
memory copies. For one sided, there is no opportunity to unpack data at the receive side, since the receiver
need not be involved in the transfer at all.

Therefore, the sender needs to insure that non-contiguous data arrives at the receiver at the correct
o�sets. The only current way to insure proper o�sets is to send each individual block of data as a separate
message. The receive portal must be con�gured to be sender-managed, where an o�set into the memory
descriptor can be speci�ed in the incoming message. Sending each block as a separate message involves an
expensive trap to the kernel for each message. For large numbers of small blocks of data, this overhead can
be extremely large.

Although a combined block memory descriptor will help to alleviate some of the overhead involved in
performing a gather send operation, there are still complexities to overcome at the receive side. For a put
operation, the layout of the data at the target process may only exist at the origin process. That is, the
portal on the receiving process must be con�gured according to the layout described by the sender. This
implies that the receiving portal must somehow be con�gured by the sender. One possible method of allowing
a sender to con�gure a portal at the receiver is to open up another portal over the portal to be con�gured.
This problem also exists for get operations.

Combined Block Issues

In order for the combined block memory descriptor to be useful, it must support both gather sends and
scatter receives. Support for scatter receives has been implemented in a development version of the Puma
kernel, but support for gather sends is more complex. When sending a message, the Puma kernel validates
that the message data is within user space by inspecting the user-supplied bu�er and length. Once the
address and length have been validated, a message header containing the length of the data is sent to the
destination. The destination uses the message length to determine how much data to receive o� the mesh.
Attempting to read any more or any less than the correct amount of data o� of the mesh can lead to
subsequent message loss or to the possible lock up of the mesh.

For a gather send, the kernel has to calculate the length of the message based on user-supplied address-
length pairs. Once the header has been sent, the sending kernel must send the correct amount of data.

16

Because the Puma kernel is static in size, it can only validate a limited number of address-length pairs at
a time. Should any of these validations fail, the kernel is left to �ll up the rest of the message with invalid
bytes. There is no way to inform the receiving side that the message contains invalid data, and no way to
prevent the receiving kernel from depositing the entire message into the receiving portal.

The result of such a corrupted gather send can be that a remote node's memory is corrupted without
any warning, notice, or means of recovery. In contrast, if the memory associated with a receive portal is
corrupted by the local node then the kernel can recognize it as an invalid receive portal and discard the
incoming message. In order to make the gather send similarly robust, the portal structures would have to
include an interface to inform the user that a portal contains bad data. Adding such an interface would
require radical changes to the current implementation of Puma.

Real-Time Channels

Early versions of the MPI-2 document contained a proposal for real-time communication. This proposal
was moved into the MPI Journal of Development and is now being developed as part of the MPI Real-
Time Forum. The proposal for real-time communication is channel-based. A channel is a unidirectional
message passing construct that allows for optimizations and guarantees unavailable in current point-to-point
communications.

A channel o�ers the opportunity to exploit persistent communication where there is a one-time cost in
choosing bu�ering schemes, protocols, algorithms, etc., which can be set up at initialization time. Channels
are ideal for real-time message passing where guarantees on deadlock avoidance, bandwidth, and bu�er space
are critical.

Although MPI does provide persistent communication constructs, it allows a persistent send to match any
receive and a persistent receive to match any send, eliminating any opportunity to negotiate any parameters
a priori. The inital setup of MPI-2 channels is a collective operation over a communicator where a quality
of service can be guaranteed. All of the overhead in channel setup is moved into the initialization so that
the send and receive operations can proceed as quickly as possible.

There is also a proposal for bu�ering on real-time channels, initially submitted by Sandia, to provide the
capability for the MPI system to have some control over the bu�ering that occurs on a channel. This proposal
provides for the application to give a list of bu�ers to the MPI layer, rather than binding a single bu�er to
a channel. This bu�ering scheme allows for `zero' sided communications in an event-driven paradigm.

Real-time channels have not been implemented on portals, but the experience with the di�erent bu�ering
schemes of of portal memory descriptors has provided valuable input to the bu�ering proposal submitted to
the MPI/RT Forum.

Validating MPI

In preparation to release the original MPI implementation for use on the TeraFLOPS machine, Intel ran the
Sandia implementation through its MPI validation test suite. The validation of the MPI library discovered
several problems areas. Because error checking is a quality of implementation issue, there were several places
in the device independent layers of MPICH where error checking was non-existent or incorrect. While some
of this was due to inconsistencies or ambiguities in the standard, much was due to the lack of a complete set
of extensive stress tests. Most problems were corrected and the �xes were passed on to the maintainers of
MPICH.

Most of the portal-speci�c problems were with the implementation of collective communications. There
is a very speci�c set of requirements that an application must adhere to in order to use the MPI collectives
built on the Puma collectives.

The Puma collective operations are not designed to handle non-contiguous datatypes. Any collective
operation which uses non-contiguous datatypes will use the collective operations that are layered on MPI
point-to-point calls. However, because type arguments need not be the same on all processes, a collective
call must be performed �rst to insure that all participating processes are using contiguous datatypes.

Because some arguments of the MPI collective calls are only signi�cant at the root process, some infor-
mation is not available to all of the processes participating in a collective call. As such, the implementation

17

of some of the collective operations had to be modi�ed to assume that these root-signi�cant arguments were
not available.

The Puma collective operations were not originally implemented to handle multiple outstanding messages
on overlapping subgroups. The implementation of Puma collectives had to be redone in order to support
multiple collective operations on di�erent communicators e�ciently.

Many of the optimizations available by using Puma collective operations were nulli�ed by strict adherence
to the standard. However, most applications will be written in such a way that it may be possible for an
implementation to perform some optimizations, given some hints from the programmer. If an application
has been written such that the arguments to collective calls are known on all processes, only contiguous
datatypes are used, and all reduction operations are commutative, then highly tuned collective operations
may be used. The current method for communicating such information is through environment variables.
The MPI library might then make a run-time decision about which operations to use.

18

Conclusion

The implementation of MPI on Sandia's large MPP machines served two purposes. First it allowed
Sandia's application programmers to migrate codes to the use of portable MPI syntax and to begin to take
advantage of advanced MPI features. The speed at which applications have been brought up on all three
ASCI architectures (a large IBM SP-based machine at Lawrence Livermore, and a large SGI/Cray Origin-
2000-based machine at Los Alamos, as well as the TeraFLOPS machine at Sandia) has been in part due to
Sandia's early adoption of MPI.

Secondly, the co-development of MPI and new MPP operating systems allowed each to be designed and
tuned to take advantage of each other. While the measurements presented in this paper concentrate on
simple send and receive operations an even larger e�ect is probably to be seen in scalability and robustness.
As work continues on both OS development and message passing libraries at Sandia, it is hoped that these
bene�ts can be quanti�ed.

A recent o�shot of the MPI and operating system work is the launch of a new program at Sandia
called Computational Plant. A goal of computational plant is to explore the possibility of extending MPP
techniques into systems built from commodity processor building blocks and newly available system area
network products. The lessons learned from the MPI and system software work will be critical in making
this new environment work.

19

References

[1] N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet-a
gigabit-per-second local-area network. IEEE Micro, 15(1):29{36, February 1995.

[2] R. Brightwell and L. Shuler. Design and implementation of MPI on Puma portals. In Proceedings of the Second

MPI Developer's Conference, pages 18{25, July 1996.
[3] W. Gropp and E. Lusk. MPICH ADI Implementation Reference Manual. Mathematics and Computer Science

Division, Argonne National Laboratory, October 1994.
[4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI message

passing interface standard. Parallel Computing, 22(6):789{828, September 1996.
[5] W. Gropp and R. Lusk. MPICH working note: The second-generation ADI for the MPICH implementation of

MPI. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory, February
1996.

[6] ISO/IEC. Information Technology { Portable Operating System Interface (POSIX R) { Part 1: System Ap-
plication: Program Interface (API). Technical report, IEEE/ANSI Standard 1003.1, 1996. Includes threads
interface (1003.1c-1995).

[7] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. Communication on the Paragon. In Proceedings

of the Intel Supercomputer Users' Group. 1993 Annual North America Users' Conference., pages 117{124, June
1993.

[8] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. SUNMOS for the Intel Paragon: A brief user's
guide. In Proceedings of the Intel Supercomputer Users' Group. 1994 Annual North America Users' Conference.,
pages 245{251, June 1994.

[9] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The International Journal of

Supercomputer Applications and High Performance Computing, 8, 1994.
[10] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.
[11] Mississippi State University. MPI on Windows NT. http://www.erc.msstate.edu/mpi/mpiNT.html.
[12] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup. The Puma

operating system for massively parallel computers. In Proceeding of the 1995 Intel Supercomputer User's Group

Conference. Intel Supercomputer User's Group, 1995.

20

Distribution:

1 MS 0321 W. J. Camp, 9200
1 MS 0439 D. R. Martinez, 9234
1 MS 0441 R. W. Leland, 9226
2 MS 0619 Review and Approval Desk, 12690

For DOE/OSTI
1 MS 0819 J. Peery, 9231
1 MS 0820 P. Yarrington, 9232
1 MS 0841 P. J. Hommert, 9100
5 MS 0899 Technical Library, 4916
1 MS 1109 A. L. Hale, 9224
1 MS 1110 R. C. Allen, Jr., 9205
1 MS 1110 D. S. Greenberg, 9223
1 MS 1110 D. E. Womble, 9222
1 MS 1111 S. S. Dosanjh, 9221
1 MS 1111 G. S. He�e�nger, 9225
1 MS 9018 Central Technical Files, 8940{2

21

